Learning synergies based in‐hand manipulation with reward shaping

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge-based reward shaping with knowledge revision in reinforcement learning

Reinforcement learning has proven to be a successful artificial intelligence technique when an agent needs to act and improve in a given environment. The agent receives feedback about its behaviour in terms of rewards through constant interaction with the environment and in time manages to identify which actions are more beneficial for each situation. Typically reinforcement learning assumes th...

متن کامل

Potential Based Reward Shaping for Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) outperforms many ‘flat’ Reinforcement Learning (RL) algorithms in some application domains. However, HRL may need longer time to obtain the optimal policy because of its large action space. Potential Based Reward Shaping (PBRS) has been widely used to incorporate heuristics into flat RL algorithms so as to reduce their exploration. In this paper, we inv...

متن کامل

Plan-based reward shaping for multi-agent reinforcement learning

Recent theoretical results have justified the use of potential-based reward shaping as a way to improve the performance of multi-agent reinforcement learning (MARL). However, the question remains of how to generate a useful potential function. Previous research demonstrated the use of STRIPS operator knowledge to automatically generate a potential function for single-agent reinforcement learnin...

متن کامل

Reward Shaping for Model-Based Bayesian Reinforcement Learning

Bayesian reinforcement learning (BRL) provides a formal framework for optimal exploration-exploitation tradeoff in reinforcement learning. Unfortunately, it is generally intractable to find the Bayes-optimal behavior except for restricted cases. As a consequence, many BRL algorithms, model-based approaches in particular, rely on approximated models or real-time search methods. In this paper, we...

متن کامل

Dynamic potential-based reward shaping

Potential-based reward shaping can significantly improve the time needed to learn an optimal policy and, in multiagent systems, the performance of the final joint-policy. It has been proven to not alter the optimal policy of an agent learning alone or the Nash equilibria of multiple agents learning together. However, a limitation of existing proofs is the assumption that the potential of a stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CAAI Transactions on Intelligence Technology

سال: 2020

ISSN: 2468-2322,2468-2322

DOI: 10.1049/trit.2019.0094